A kinetic model of the thiazide-sensitive Na-Cl cotransporter.
نویسندگان
چکیده
The aim of this study was to construct a numerical model of the thiazide-sensitive Na-Cl cotransporter (TSC) that can predict kinetics of thiazide binding and substrate transport of TSC. We hypothesized that the mechanisms underlying these kinetic properties can be approximated by a state diagram in which the transporter has two binding sites, one for sodium and another for chloride and thiazide. On the basis of the state diagram, a system of linear equations that should be satisfied in the steady state was postulated. Numerical solution of these equations yielded model prediction of kinetics of thiazide binding and substrate transport. Rate constants, which determine transitional rates between states, were systematically adjusted to minimize a penalty function that was devised to quantitatively estimate the difference between model predictions and experimental results. With the resultant rate constants, the model could simulate the following experimental results: 1) dissociation constant of thiazide in the absence of sodium and chloride; 2) inhibitory effect of chloride on thiazide binding; 3) stimulatory effect of sodium on thiazide binding; 4) combined effects of sodium and chloride on thiazide binding; 5) dependence of sodium influx on extracellular sodium and chloride; and 6) inhibition of sodium influx by extracellular thiazide. We conclude that known kinetic properties of TSC can be predicted by a model which is based on a state diagram.
منابع مشابه
Expression of the thiazide-sensitive Na-Cl cotransporter by rabbit distal convoluted tubule cells.
A thiazide-sensitive Na-Cl cotransporter contributes importantly to mammalian salt homeostasis by mediating Na-Cl transport along the renal distal tubule. Although it has been accepted that thiazide-sensitive Na-Cl cotransport occurs predominantly along the distal convoluted tubule in rats and mice, sites of expression in the rabbit have been controversial. A commonly accepted model of rabbit d...
متن کاملCharacterization of the thiazide-sensitive Na(+)-Cl(-) cotransporter: a new model for ions and diuretics interaction.
The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is the major pathway for salt reabsorption in the apical membrane of the mammalian distal convoluted tubule. When expressed in Xenopus laevis oocytes, rat TSC exhibits high affinity for both cotransported ions, with the Michaelis-Menten constant (K(m)) for Na(+) of 7.6 +/- 1.6 mM and for Cl(-) of 6.3 +/- 1.1 mM, and Hill coefficients for Na...
متن کاملThe thiazide-sensitive Na+-Cl- cotransporter: molecular biology, functional properties, and regulation by WNKs.
The thiazide-sensitive Na+-Cl(-) cotransporter is the major salt reabsorption pathway in the distal convoluted tubule, which is located just after the macula densa at the beginning of the aldosterone-sensitive nephron. This cotransporter was identified at the molecular level in the early 1990s by the pioneering work of Steven C. Hebert and coworkers, opening the molecular area, not only for the...
متن کاملDefective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman's syndrome.
Gitelman's syndrome is an autosomal recessive disorder of salt wasting and hypokalemia caused by mutations in the thiazide-sensitive Na-Cl cotransporter. To investigate the pathogenesis of Gitelman's syndrome, eight disease mutations were introduced into the mouse thiazide-sensitive Na-Cl cotransporter and studied by functional expression in Xenopus oocytes. Sodium uptake into oocytes that expr...
متن کاملFunctional differences between flounder and rat thiazide-sensitive Na-Cl cotransporter.
The purpose of the present study was to determine the major functional, pharmacological, and regulatory properties of the flounder thiazide-sensitive Na-Cl cotransporter (flTSC) to make a direct comparison with our recent characterization of the rat TSC (rTSC; Monroy A, Plata C, Hebert SC, and Gamba G. Am J Physiol Renal Physiol 279: F161-F169, 2000). When expressed in Xenopus laevis oocytes, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 276 6 شماره
صفحات -
تاریخ انتشار 1999